Your Roll No. I

S. No. of Paper

Name of the Course

Maximum Marks

Semester

Duration

X by:

Unique Paper Code

: 93

: 32351501 Name of the Paper : Metric Spaces

> (Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question. All questions are compulsory

1. (a) (i) Let $X = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$. Define the metric d on

 $d(x, y) = \tan^{-1} x - \tan^{-1} y |, x, y \in X,$

Show that (X, d) is a metric space.

Show that d is not a metric on X.

maximum metric d∞.

where $\tan^{-1}(\infty) = \pi/2$ and $\tan^{-1}(-\infty) = -\pi/2$.

(ii) Let X denote the set of all Riemann integrable

 $d(f,g) = \int_a^b |f(x) - g(x)| dx.$

Prove that a sequence in R" is Cauchy in the Eucli-

dean metric d_2 if and only if it is Cauchy in the

functions on [a, b]. For f, g in X, define:

: 3 hours

: 75

Talkaji, N

3+3=6

P. T. O

: B.Sc. (Hons.) Mathematics

- (c) (i) Show that the metric space (X, d) of rational numbers is an incomplete metric space.
 - (ii) Let X be any nonempty set and d be the discrete metric defined on X. Prove that the metric space
 (X, d) is a complete metric space.
- 2. (a) Let (X, d) be a metric space. Prove that the intersection of any finite family of open sets in X is an open set in X. Is it true for the intersection of an arbitrary family of open sets? Justify your answer.
 - (b) Prove that if A is a subset of the metric space (X, d), then $d(A) = d(\overline{A})$.
 - (c) Let F be a subset of a metric space (X, d). Prove that the following are equivalent:
 - (i) $x \in \overline{F}$
 - (ii) $S(x, \epsilon) \cap F \neq \emptyset$ for every open ball $S(x, \epsilon)$ centered at x;
 - (iii) There exists an infinite sequence $\{x_n\}$, $n \ge 1$ of points (not necessarily distinct) of F such that $x_n \to x$.
- 3. (a) Let (X, d) be a metric space and Z ⊆ Y ⊆ X. If cl_X(Z) and cl_Y(Z) denote, respectively, the closures of Z in the metric spaces X and Y, then show that:

$$\operatorname{cl}_Y(Z) = Y \cap \operatorname{cl}_X(Z).$$

- (b) (i) Let Y be a nonempty subset of a metric space (X, d_X), and (Y, d_Y) is complete. Show that Y is
 - (ii) Is the converse of part (i) true? Justify your 4+2=6
- (c) Let d_p ($p \ge 1$) on the set \mathbb{R}^n be given by:

$$d_p(x, |y|) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{1/p},$$
for all $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n . Show that (\mathbb{R}^n, d_p) is a separable metric space.

6

4. (a) Prove that a mapping $f: (X, d_X) \to (Y, d_Y)$ is continuous on Y if and $f: (X, d_X) \to (Y, d_Y)$ is

- continuous on X if and only if $f^{-1}(F)$ is closed in X for all closed subsets F of Y. 6 1/2 (b) (i) Define an isometry between the metric spaces (X, d_X) and (Y, d_Y) , and show that it is a homeomorphism.
 - (ii) Is the completeness of a metric space preserved under homeomorphism? Justify your answer. 4+21/2=61/2
 - (c) State and prove the Contraction Mapping Principle. 11/3+5=61/3

P. T. O.

(a) Let f be a mapping of (X, d_X) into (Y, d_Y) . Prove that f 5. is continuous on X if and only if for every subset F of Y: $f^{-1}(\mathsf{F}^{0}) \subseteq (f^{-1}(\mathsf{F}))^{0}$ 614

(b) Prove that the metrics d_1 , d_2 and $d\infty$ defined on \mathbb{R}^n by:

$$d_{\mathbf{l}}(x,y) = \sum_{j=1}^{n} \left| x_{j} - y_{j} \right|;$$

$$d_2(x, y) = \left(\sum_{j=1}^n |x_j - y_j|^2\right)^{1/2}$$
; and

$$d\infty (x, y) = \max \{ |x_j - y_j| : j = 1, 2, ..., n \}$$
for $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$
are equivalent.

- (c) Prove that a metric space (X, d) is disconnected if and only if there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) . $6\frac{1}{2}$
- (a) If every two points in a metric space X are contained in some connected subset of X, prove that X is connected.
 - (b) Let (X, d) be a metric space and Y a subset of X. Prove that if Y is compact subset of (X, d), then Y is bounded. Is the converse true? Justify your answer.

(c) If f is a one-to-one continuous mapping of a compact metric space (X, d_X) onto a metric space (Y, d_Y) , then prove that f is a homeomorphism.

6½

3100

(c) If H, K and L are normal subgroups of a group G. Then
 G is internal direct product of H, K and L if G = HKL and
 H O K O L = {e} where e is identity of G.
 (d) The order of the group of inner automorphisms of

- (d) The order
 additive group of integers is greater than 1.
 (e) The dihedral group D₈ of order 8 is a subgroup of the symmetric group S₄.
- (f) For any two groups G₁ and G₂, G₁ ⊕ G₂ is isomorphic to G₂ ⊕ G₁.
 (g) Let G be a non-abelian group. A map G × G → G is given
- of G on itself.

 (h) Every subgroup H of a group G of index 2 is normal

in G.

{(1 2 3), (1 3 2)};

(i)

by $(g, a) \mapsto g$. a = ag for all g and a in G. This is an action

action of G on itself is transitive.

(f) In S_3 the all conjugacy classes are $\{(1\ 2), (1\ 3), (2\ 3)\}$ and

If order of a group G is greater than 1, then the conjugacy

2. (a) Prove that for any positive integer n, $Aut(\mathbf{Z}_n)$ is isomorphic to U(n), where \mathbf{Z}_n is the group $\{0, 1, 2, \dots, n\}$

subgroup of N.

- isomorphic to U(n), where \mathbb{Z}_n is the group $\{0, 1, 2, \dots, n-1\}$ under addition modulo n and U(n) the group of
- units under multiplication modulo n and $Aut(\mathbf{Z}_n)$ denotes
- the group of automorphisms of \mathbb{Z}_n .

 (b) Define the commutator subgroup G' of a group G. Prove that G/G' is abelian and if G/N is abelian then G' is
- (c) Prove that the order of an element of a direct product of fnite number of finite groups is the least common multiple of the orders of the components of the element.
- 3. (a) Prove that if a group G is the internal direct product of a fnite number of subgroups H₁, H₂,, H_n, then G is

isomorphic to the external direct product of H,

- H₂,, H_n.
- (b) Find all subgroups of order 4 in Z₄ ⊕ Z₄.
 (c) Let G = {1, 7, 17, 23, 49, 55, 65, 71} be the group under
 - multiplication modulo 96. Express G as an internal direct product of cyclic groups.

(a) Let G be an abelian group of order 120 and G has exactly three elements of order 2. Determine the isomorphism class of G.

4.

(ii)

(c)

(b) (i) Let G be a group acting on a non-empty set A.

Define kernel of action of G on A and explain when this action will be called faithful.

8 on the set $A = \{\{1, 3\}, \{2, 4\}\}$ of the unordered pair of opposite vertices of a square. Show that this action is not faithful. Further, show that for either $a \in A$ ($a = \{1, 3\}$ or $\{2, 4\}$), the stabilizer of a in D_a equals the kernel of the action.

Let G be a group and A be any subset of G. Define

Consider the action of the dihedral group D₈ of order

centralizer $C_0(A)$ and normalizer $N_0(A)$ of A in G. Further, for the symmetric group S_1 and a subgroup $A = \{1, (1, 2)\}$

of S_3 , find centralizer and normalizer of A in S_3 where I denotes identity of S_4 .

5.

Let G be a group, H be a subgroup of G and let G act by left multiplication on the set A of left cosets of H in G. Let

The the associated permutation representation afforded.

 $\pi_{\rm H}$ be the associated permutation representation afforded by this action. Then, show that the following hold:

(i) G acts transitively on A.

(ii) The stabilizer in G of 1H ∈ A is a subgroup of H where 1 is identity of G.
 (iii) Kernel of π_H is equal to Ω_{x∈G} xHx⁻¹ and the kernel

of π_H is the largest normal subgroup of G contained in H.

(b) Let G be a group acting on a non-empty set A given by

g.a for all $g \in G$ and for all $a \in A$. If $a, b \in A$ and b = g.a, for $g \in G$, then show that $G_b = gG_ag^{-1}$. Deduce that, if G acts transitively on A, then kernel of the action

is $\bigcap_{g \in G} gG_u g^{-1}$ where G_x denotes stabilizer of x in G.

(c) (i) State the class equation for a finite group G. Find all conjugacy classes and their sizes in the alternating group A_4 .

(iii) Let G be a group of order p^2 for some prime p. Show that it is isomorphic to either \mathbf{Z}_{p^2} or $\mathbf{Z}_p \times \mathbf{Z}_{p^2}$

6. (a) Show that for any positive integer n greater than or equal to 5, the alternating group A_n of degree n does not have

a proper subgroup of index less than n.

Prove that if order of a group G is 105, then it has normal

Sylow 5-subgroup and normal Sylow 7-subgroup.

State and prove the Index theorem. Hence or otherwise,

show that there is no simple group of order 216.

[This question paper cont Sid-Mo: 5] C Unique Paper Code:	ains four printed pages.]	2018
Unique Paper Code :	235501	
Name of the Paper :	Differential Equation and Math [Paper No. 5.1]	nematical Modeling III
Name of the Course:	Semester Mode B.Sc.(Hons.) N	Mathematics
Semester :	v (14)	
Duration: 3 Hours		Maximum Marks: 75
Instructions for Candida	tes	SHADHU CO
z. All questions are o	parts from and	otof this question haper.
		New Dally
b) Using the fa show that:	ace transform, solve the system of $x' = x + 2y$; $y' = x + e^{-t}$, $x(0)$ actorization $s^4 + 4a^4 = (s^2 - 2a^2)$	$y = y(0) = 0,$ $(as + 2a^2)(s^2 + 2as + 2a^2),$ [6]
	$L^{-1}\left\{\frac{s}{s^4+4a^4}\right\} = \frac{1}{2a^2} \sinh at \sin at.$ obenius series solution of	[6]
	xy'' + 2y' + xy = 0.	[6]
d) Show that the its derivative 2.	he function $f(t) = \sin(e^{t^2})$ is of	exponential order as $t \to \infty$ but that [6]
a) Explain the	linear congruence method for gen nple. Does this method have any	erating random numbers by giving a drawbacks? Illustrate. [6]
b) Use Monte (he area under the curve $f(x) = \sqrt{x}$, [6]
c) Using simple	ex Method	
Optimize subject to	$6x + 4y$ $-x + y \le 12$ $x + y \le 24$	
at any one the	$2x + 5y \le 80$, $x, y \ge 80$ for has unloading facilities for s	hips. Only one ship can be unloaded d for a ship depends on the type and

	ship I	ship 2	ship 3	ship 4	chin 5	
Time between successive ship(in min)	20	30	15	120	ship 5	
Unloading time	55	45	60	75	90	
(i) Draw the time line diagram depicti	ing clearl	y the si	tuation t	for each	ship	
the idle time for the narbor and the	Waiting	time			CAT	
(ii) List the waiting times for all the sh	ips and f	ind the	average	waiting	time	
				waiting	[2]	
3.					[4]	
a) (i) Draw the graphs of K ₅ , N ₆ , and C ₇ .					[3]	
(ii) Define a r - regular graph. Prove that,	a r-reg	ılar ora	nh with	n vertic	[-]	
has $\frac{1}{2}nr$ edges.		and Siu	pir erren	ii vertic	CS	
270. 00805.					[3]	
			September 1			
b) (i) Define Eulerian graph. Which one ar	mong K	CO	o are F	ulerian	Explain	
with reason.	0	, ~o, ~	0 0110 2		The second second second second	
(ii) State Handshaking Lemma.					[3]	
그는 그렇게 이 어린다는 이 대통령을 만들는 이번을 그리고 있다고 있다. 그는 그는 그는 그는 그는 그를 하는 사람들이 하는 사람들이 하고 있다면 살아왔다면 하는 것이 없는 것이다. 그렇게 되는 그는					[3]	
c) Find two further ways of arranging fifteen	dominoe	s from	(0-0 to	4-4) in a	a ring.	
					[6]	
d) Prove that a connected graph is Eulerian iff	feach ve	rtex has	s even d	egree.	[6]	
				•	Lag	
4.		141				
 a) Find two linearly independent Frobenius se 	eries solu	ition of				
4xy'' + 2y' + y = 0					[6]	
					الما	
5^2+k^2						
b) Show that: $L\{t \cosh kt\} = \frac{s^2 + k^2}{(s^2 - k^2)^2}$.					[6]	
하고 있었다. 1984년 1월 1일 교육 전기 - 12일 - 12일 전기 기계 전기 - 12일 전기 기계 전기 전기 기계						
c) Carpenter problem is given by:						
Maximize $z = 25 x + 30 y$						
	120	ful by				
subject to $20x + 30y \le 690$ and $5x + 4y$	$y \le 120$	x, y	≥ 0.		and the state of the	
Determine the sensitivity of the optimal s	olution	to a c	hange	in "c"	using the	j.
objective function $c x + 30 y$.					[6]	
그는 맛이 하는데 하면 가는 것이 없어 없는데 하다 하는데 하다.						
d) Prove that if G be a graph in which every v	vertex h	as an e	ven de	pree th	ien G can	
be split into cycles, such that no two cycles i	have an	edge li	1 come	1011	all active	
The state of the s	HAST Y W. CLEE	AURA II	r coimi	IVIII	[6]	

[This Question paper contains 4 printed page(s)] Sr. No. of Question Paper: Roll No.: 2018 Unique paper Code: 235503 Name of the course: B.Sc. (Hons) Mathematics Title of the Paper: Analysis-IV(MAHT-502) Semester: 3 Hours Duration: (Write your Roll No. on the top immediately on receipt of this question paper.) All questions are compulsory. Attempt any TWO parts from each question. 1. a) Let d and e be two metrics on a set X. Let g be the function defined on X x X by $g(x, y) = \min \{e(x, y), d(x, y)\}$. Show that g need not be a metric on X and find a condition under which it is a metric.

b) Define an isometry φ between the metric spaces (X, d) and (Y, e). Show that every isometry is injective. Further show that φ^{-1} is also an isometry. Is φ

an homeomorphism?

c) Suppose (X, d) is a metric space, w & X and A is a subset of X. Then show that

dist(w, cl(A)) = dist(w, A),

where cl(A) is the closure of A.

2. a) If S is a subset of a metric space X, prove that

(i) $(S^0)^c = cl(S^c)$

(ii) $S^s = \{x \in X : dist(x, S^c) > 0\}.$

(6)

(6)

THE COMPANY STORESTON OF LOW MAN

MEME Virgini con la 🎷 🗀

b) Suppose (X, d) is a metric space and $A \subseteq X$. Show that $diam(\bar{A}) = diam(A)$

Is diam $(A^{\circ}) = \text{diam}(A)$? Justify your answer.

c) (i) Define a bounded metric space. Give an example of a bounded and an unbounded metric space.

(ii) Suppose X is a metric space and S is a bounded subset of X, Show that

closure of S is bounded in X.

3. a) Suppose (X, d) is a metric space and S is a nonempty subset of X. Prove that S is open in X if and only if S is a union of open balls of X. (6)

b) Suppose X is a metric space and Z is a metric subspace of X. Suppose $r \in \mathbb{R}^+$. If $x \in Z$, then prove that $b_X[x; r] \cap Z$ is the closed ball $b_Z[x; r]$ of Z. and all the closed balls of Z are of this form.

c) If A is a nonempty subset of the metric space X then show that $x \in A^{\circ}$ if, and only if, there is no sequence in A^c that converges to x in X.

4. a) (i) Let A be a nonempty subset of a metric space X. Prove that the function $f: x \rightarrow dist(x, A)$ is uniformly continuous.

(ii) Prove that a function with a discrete metric space as its domain is continuous.

13 1/4 + 3 = 8 1/4 1 :

b) Prove that a subset A of real line, R is totally bounded if, and only if, it is bounded.

(6 1/2)

c) (i) Let (X, d) and (Y, e) are metric spaces, S is a bounded subset of X and $f: X \to Y$ is a Lipschitz function. Prove that f(S) is bounded in Y.

(ii) Suppose X is a metric space and f is a strong contraction on X. Then, prove that f is uniformly continuous on its domain.

 $(3+3 \frac{1}{2} = 6 \frac{1}{2})$

5. a) State Banach's Fixed-Point Theorem. Suppose f: R →R is a differentiable function and there exists $k \in (0, 1)$ such that $|f'(x)| \le k$ for all $x \in \mathbb{R}$.

Then, show that f has a unique fixed point.

b) Suppose X is a non-empty set and (Y, e) is a metric space. Show that the space B(X, Y) of bounded functions from X into Y, with its supremum metric, s, defined by

(6 1/2)

(6 1/2)

16 1/3 1

$$s(f,g) = \sup\{e(f(x),g(x):x \in X) \text{ for } f,g \in B(X,Y),$$
 is a complete metric space if and only if Y is complete.

c) Prove that the closure of a connected subset, A, of a metric space (X, d) is connected.

6. a) Suppose (X, d) is a metric space. Prove that X is connected if and only if either $X = \emptyset$ or the only continuous functions from X to the discrete t_{WO}

point space {0, 1} are the two constant functions.

b) Suppose X is a compact metric space and $f: X \rightarrow Y$ is a continuous map.

Chapter to the state of the sta

(6 1/2)

 $(6 \frac{1}{2})$

(6 1/2)

Prove that f(X) is compact and that f is uniformly continuous.

THE PLANTS OF THE PROPERTY OF c) State and prove Inverse Function Theorem.

Company of a street of branching to

Algebra-IV (MAHT-503)

Name of the Paper: Name of the Course: B.Sc.(H) Mathematics

Semester 3 hours

Duration

75 Maximum Marks

Instruction for the candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper. 2. Attempt any five parts from Question No.1. Each part carries three marks.
- 3. Attempt any two parts from each of the Question No. 2 to 6. Each part carries six marks.

1. (a) Let $\beta = \{(2,1), (3,1)\}$ be an ordered basis for \mathbb{R}^2 . Suppose that the dual basis of β is given by $\beta^* = \{f_1, f_2\}$. Then determine formulas for f_1 and f_2 explicitly.

(b) Find all the eigenvectors of the matrix $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.

(c) Let A be a real $n \times n$ matrix such that $A^3 = A$. Then show that A is diagonalizable. (d) Let V = C([0,1]) be the inner product space of real valued continuous functions defined on [0,1], with the inner product given by $\langle f,g \rangle = \int_0^1 f(t)g(t)dt, \text{ for } f,g \in V.$

For
$$f(t) = t$$
 and $g(t) = e^t$ in V , compute $\langle f, g \rangle$, $||f||$ and $||g||$.
(e) Apply the Gram-Schmidt orthogonalization process to the given subset $S = \{(1,0,1,0), (1,1,1,1), (0,1,2,1)\}$ of the inner product space $V = \mathbb{R}^4$ to obtain an orthogonal basis for span(S).

(h) Prove that $\sin \theta$ is constructible if and only if $\cos \theta$ is constructible.

extension of F.

(g) Find the degree and basis for $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ over \mathbb{Q} .

 $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T. If $v_1, v_2, ..., v_k$ are eigenvectors of T such that λ_i

corresponds to v_i $(1 \le i \le k)$, then $\{v_1, v_2, ..., v_k\}$ is linearly independent. (c) Let T be a linear operator on a finite dimensional vector space V and let W be a T-invariant subspace of V. Then, the characteristic polynomial of T_W divides the characteristic polynomial of T.

3. (a) Let p(t) be a minimal polynomial for a linear operator T on a finite dimensional vector space V and T_0 be the zero operator on V. If g(t) is any polynomial for which $g(T) \equiv T_0$, then show that p(t) divides g(t). Hence or otherwise, show that the minimal polynomial of T is unique.

(b) Let V be an inner product space over F. Prove that for all $x, y \in V$,

i.
$$\langle x, y \rangle = \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2 \text{ if } F = \mathbb{R};$$

ii. $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^4 i^k ||x + i^k y||^2 \text{ if } F = \mathbb{C}, \text{ where } i^2 = -1.$

$$(x,y) = \frac{1}{4} ||x + y|| - \frac{1}{4} ||x - y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2 \text{ if } F = \mathbb{C}. \text{ where } x = \frac{1}{4} ||x + i^k y||^2$$

(c) For the following set of data, use the least square approximation to find the line of best fit: (c) For the following set of data, use the least square approximation to find the line of best fit: $\{(-3,9), (-2,6), (0,2), (1,1)\}.$

4. (a) Define an inner product space V(F), where V is a vector space over the field $F = \mathbb{R}$ or \mathbb{C} . Also, prove that

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \text{ for } x, y, z \in V.$$

(b) Let V be an inner product space and $S = \{v_1, v_2, ..., v_k\}$ be an orthogonal subset of V consisting of non-zero vectors. If $y \in span(S)$, then prove that

$$y = \sum_{i=1}^k \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i.$$

(c) Let V be an inner product space, and let T and U be linear operators on V. Prove that

$$(T+U)^* = T^* + U^*$$

i.
$$(T+U)^* = T^* + U^*$$

ii. $T^{**} = T$
ii. $(TU)^* = U^*T^*$,

iii.
$$(TU)^* = U^*T^*$$
,

where T^* denotes the adjoint of operator T.

- 5. (a) Let F be a field and let $f(x) \in F[x]$. Then prove that any two splitting fields of f(x) over F are isomorphic.
- (b) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- (c) If E, F, K are fields such that K is a finite extension of E and E is a finite extension of F, then prove that K is a finite extension of F and

$$[K:F] = [K:E][E:F].$$

- 6. (a) For each prime p and each positive integer n, prove that there is a unique finite field of order ph up to isomorphism.
- (b) Let F be a field and f(x) a non-constant polynomial in F[x]. Prove that there is an extension field E of F in which f(x) has a zero.
- (c) If a and b are constructible numbers, then prove that a+b and a-b are also constructible.

SerA

St. No. 0 67: 1691

Linear Programming and Theory of Games (MAHT 504)

Unique Paper Code Name of the Paper

B.Sc. (Hons.) Mathematics - III (Three year Scine ster Mode) Name of Course Semester 3 Hours

Duration 75 Maximum Marks

Instructions of Candidates

- Write your Roll No. on the top immediately on receipt of this question paper. (i)
- Attempt any two parts from each question.
- (iii) All questions carry equal marks.
- Consider the LPP (a) Minimize $z = cx_1$ subject to

1.

$$AX = b$$
, $X \ge 0$,

where A is $m \times n$ matrix with rank m. If \hat{X} is an extreme point feasible solution of the feasible set, then prove that \hat{X} is a basic feasible solution of the system AX = b, $X \ge 0$. Is the converse true?

Consider the LPP Minimize z = cx, subject to

$$AX = b$$
$$X \ge 0.$$

Suppose there exists a basic feasible solution with $z_k - c_k > 0$ for some non-basic variable x_k and $Y_k \le 0$, then prove that the LPP is unbounded.

(c) Solve the following LPP using simplex method: $Minimize z = x_1 + x_2 - 4x_3,$

subject to,

$$x_{1} + x_{2} + 2x_{3} \leq 9,$$

$$x_{1} + x_{2} - x_{3} \leq 2,$$

$$-x_{1} + x_{2} + x_{3} \leq 4,$$

$$x_{1}, x_{2}, x_{3} \geq 0.$$

Use two-phase simplex method to solve the following: 2 Maximize $z = 2x_1 + 3x_2$, subject to

$$3x_1 + 3x_2 \ge 4)$$

$$x_1 + x_2 \le 1,$$

$$x_1 \ge 0, x_2 \text{ unitestricted.}$$

(c) Find the inverse of the matrix
$$\begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}$$
 using simplex method.

Find the dual of the following problem:

Find the dual of the following problem:

$$x_1 + 2x_2 \ge 3, \\ x_2 + 7x_3 \le 6, \\ x_1 - 3x_2 + 5x_3 = 5, \\ x_1, x_2 \ge 9, \\ x_2 \text{ unrestricted.}$$

(b) If x is a feasible solution of Maximize $z = cx$) subject to
$$Ax \le b, \\ x \ge 0,$$
 and w is any dual feasible solution of Minimize $z^* = b^T w$, subject to
$$A^T w \ge c^T, \\ w \ge 0,$$
 then show that $cx \le b^T w$.

(c) Solve the following L.P.P. by solving its dual: Maximize $z = -2x_1 - 3x_2$, subject to
$$2x_1 - x_2 \le 3, \\ x_2 \ge 4, \\ x_1 + 3x_2 \ge 10, \\ 4x_1 - x_2 \le -10, \\ x_1 \ge 0, x_2 \text{ unrestricted.}$$

(a) Solve the following cost-minimizing transportation problem. Use Vogely approximation method to find initial basic feasible solutions:

$$D_1 \qquad D_2 \qquad D_3 \qquad \text{Supply}$$

$$O_1 \qquad 6 \qquad 8 \qquad 4 \qquad 14$$

$$O_2 \qquad 4 \qquad 9 \qquad 3 \qquad 12$$

$$O_1 \qquad 1 \qquad 2 \qquad 6 \qquad 5$$

$$D_1 \qquad 1 \qquad 2 \qquad 6 \qquad 5$$

$$D_2 \qquad 1 \qquad 1 \qquad 2 \qquad 6 \qquad 5$$

$$D_3 \qquad 1 \qquad 1 \qquad 2 \qquad 6 \qquad 5$$

Use Big-M method to solve the following:

 $x_1 + x_2 \le 1$

 $x_1 + x_2 \ge 1$ $x_1, x_2 \geq 0.$

 $Minimize z = -3x_1 + 2x_2,$

(b)

3.

4.

subject to

(b) Solve the following cost-minimizing assignment problem:

Control of the State of the Sta			-	1	4000
	8	b	c	d	e
A	3	3	1	5	1
В	7	5	1	11	3
. с	1	2	1	2	3
D	3	5	1	5	3
Е	3	1	1	1	3

(c) Use the minimax criteria to find best strategy for each player, saddle point and value of the game having following pay off matrix:

Player B
$$\begin{bmatrix}
-3 & -2 & 6 \\
2 & 0 & 2 \\
5 & -2 & -4
\end{bmatrix}$$

Is the game fair? Give reason(s).

5. (a) Use the relation of dominance to solve the game whose pay-off matrix is given by

$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & 0 & 5 \\ 0 & 1 & -1 \end{bmatrix}$$

and hence find the optimum strategies and value of the game

(b) Solve graphically the game whose pay off matrix is

$$\begin{bmatrix} 4 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

(c) Reduce the following game to a Linear Programming Problem and then solve by simplex method:

SI-NO. 07 9-P Unique Paper Code 2018 Name of the Paper Calculus II (Multivariate Calculus) Name of the Course B.Sc.(H) Mathematics Semester Duration 3 hours Maximum Marks

Instructions for Candidates

Attempt any five questions from each section. (i)

75

- (ii) Each question carries 5 marks.
- Use of scientific calculators is allowed. (iii)

Section-I

1. Examine the following functions for continuity at origin:

$$\frac{1}{2xy} (x,y) + (y,y) + (y,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) + (y,y) \\ 0 & (x,y) = (y,y) \end{cases}$$

- a) $f(x,y) = \frac{2xy}{x^2 + y^2}$ b) $f(x,y) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 2. When two resistances R_1 and R_2 are connected in parallel, the total resistance R_1 satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 is measured as 300 ohms with a maximum error of 2 percent and R_2 is measured as 500 ohms with a maximum of 3 percent, what is the maximum percentage error in R?
- 3. If y is a differentiable function of x such that $\sin(x + y) + \cos(x y) = y$, find $\frac{dy}{dx}$.
- Let T(x, y) be the temperature at each point (x, y) in a portion of the plane that contains the ellipse $x = 2\cos(t)$, $y = \sin(t)$ for $0 \le t \le 2\pi$. Suppose $\frac{\partial T}{\partial x} = y$ and $\frac{\partial T}{\partial y} = x$

a) Find $\frac{dT}{dt}$ and $\frac{d^2T}{dt^2}$

b) Locate the maximum and minimum temperatures on the ellipse.

- 5. Find the equations of the tangent plane and normal line at the point $P_0(1,-1,2)$ on the surface S given by $x^2y + y^2z + z^2x = 5$.
- 6. Find the absolute extrema of the function $f(x,y) = e^{x^2-y^2}$ over the disc $x^2 + y^2 \le$

Section-II

7. A container in \mathbb{R}^3 has the shape of the cube given by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. A plate is placed in the container in such a way that it occupies that portion of the plane x + y + z = 1 that lies in the cubical container. If the container is heated so that the temperature at each point (x, y, z) is given by $T(x, y, z) = 4 - 2x^2 - y^2 - z^2$ in hundreds of degrees Celsius. What are the hottest and coldest points on the plate?

- 8. Find the area of the region between y = cos(x) and y = sin(x) over the interval
 - a) Single Integral
 - b) A double integral.
- 9. Show that volume of the sphere of radius R is $\frac{4}{3}\pi R^3$.
- 10. Evaluate $\iiint_B z^2 y e^x dV$, where B is the box given by $0 \le x \le 1, 1 \le y \le 2, -1 \le z \le 1$.
- 11. Evaluate $\iiint_D x dV$, where D is the solid in the first octant bounded by the cylinder $x^2 + y^2 = 4$ and the plane 2y + z = 4.
- 12. Find the centroid of the Solid with constant density δ and bounded below by the xy plane on the sides by the cylinder $x^2 + y^2 = 4$ and above by the surface $z = x^2 + y^2$.

Section III

- 13. Suppose that the vector field F and curl F are both continuous in a simply connected region D of \mathbb{R}^3 . Show that F is conservative in D if and only if Curl F = 0.
- 14. Show that no work is performed when an object moves along a closed path in a connected domain where the force field is conservative.
- 15. Evaluate the line integral $\int_C xyds$ where C consists of the line segment C_1 from (-3, 3) to (0, 0) followed by the portion of the curve C_2 : $16y = x^4$ between (0, 0) and (2, 1).
- 16. Find the mass of a lamina of density $\delta(x, y, z) = z$ in the shape of the hemisphere $z = \sqrt{a^2 x^2 y^2}$.
- 17. Evaluate $\iint (x+y+z)dS$ where S is the surface determined by R(u,v)=ut+uj-vk, $0 \le u \le 1$, $0 \le v \le 2$.
- 18. State divergence theorem and use it to evaluate $\iint_S F.N \, dS$ where $F = xyl z^2k$ and S is the surface of the upper five faces of the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.

